

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

### Separation of Aromatic Carboxylic Acids Using Quaternary Ammonium Salts on Reversed-Phase HPLC. 2. Application for the Analysis of Loy Yang Coal Oxidation Products

Kunio Kawamura<sup>a</sup>, Akitsugu Okuwaki<sup>a</sup>, T. V. Verheyen<sup>b</sup>, G. J. Perry<sup>b</sup>

<sup>a</sup> Graduate School of Environmental Studies, Tohoku University, Sendai, Japan <sup>b</sup> HRL Technology PTY Ltd., Morwell, Victoria, Australia

**To cite this Article** Kawamura, Kunio , Okuwaki, Akitsugu , Verheyen, T. V. and Perry, G. J.(2006) 'Separation of Aromatic Carboxylic Acids Using Quaternary Ammonium Salts on Reversed-Phase HPLC. 2. Application for the Analysis of Loy Yang Coal Oxidation Products', Separation Science and Technology, 41: 4, 723 – 732

**To link to this Article:** DOI: 10.1080/01496390500527985

URL: <http://dx.doi.org/10.1080/01496390500527985>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## Separation of Aromatic Carboxylic Acids Using Quaternary Ammonium Salts on Reversed-Phase HPLC. 2. Application for the Analysis of Loy Yang Coal Oxidation Products

**Kunio Kawamura and Akitsugu Okuwaki**  
Graduate School of Environmental Studies, Tohoku University,  
Sendai, Japan

**T. V. Verheyen and G. J. Perry**  
HRL Technology PTY Ltd., Morwell, Victoria, Australia

**Abstract:** In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.

**Keywords:** High performance liquid chromatography, aromatic carboxylic acid, coal oxidation products, alkaline solution at high temperature, quaternary ammonium salt, ion-pair solvent extraction

Received 17 August 2005, Accepted 15 November 2005

Address correspondence to Kunio Kawamura, Present address: Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531, Japan. E-mail: kawamura@chem.osakafu-u.ac.jp

## INTRODUCTION

Oxidation of coal in aqueous solutions at high temperatures is a useful technique for the utilization of different rank of coal resources (1–5). Oxalic acid and acetic acid are possible to obtain from the coal oxidation in acidic and alkaline solutions (6–11) as well as a pilot operation of the coal oxidation in alkaline solution and a continuous removal technique of carbon dioxide for the coal oxidation in alkaline solution at high temperatures were developed (12–14). Additionally, several applications have been attempted by our group (15, 16).

On the other hand, a large extent of water-soluble aromatic polycarboxylic acids can be obtained in the coal oxidation products, where the total yields of aromatic carboxylic acids sometimes reach to 50 wt% of the oxidation products (16). However, useful applications of the production of aromatic carboxylic acids from coal have not been adequately established. Practical industrial applications carried out are dependent on the relative costs of petroleum and coal, and the demand of aromatic polycarboxylic acids (17–19). Additionally, the efficient and practical analytical methods of these aromatic carboxylic acids have not been developed since the coal oxidation products involve a fairly complicated mixture of carboxylic acid isomers since there are few systematic investigations on the analysis of aromatic carboxylic acids (20–24). Normally, these products have been analyzed using gas chromatography (GC). However, the derivation of methyl esters from aromatic carboxylic acids is necessary. In our previous studies, solvent extraction behavior (25) and separation behavior on HPLC for aromatic polycarboxylic acids was investigated.

In this study, the separation method of benzene polycarboxylic acids using the reversed-phase HPLC in the presence of quaternary ammonium has been optimized without the derivation to methyl esters (25). Moreover, the separation of coal oxidation products was attempted and the results were compared with data obtained by GC-MS analysis.

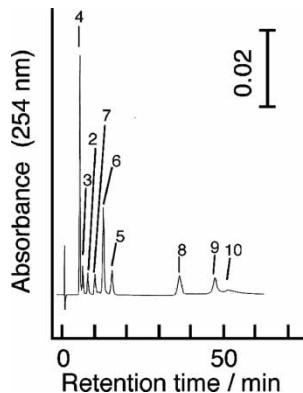
## EXPERIMENTAL

### Materials and Apparatus

All reagents used were of extra pure grade. Separation behavior of aromatic carboxylic acids was analyzed using a HPLC system consisting of UVIDECK-100V, TRIOTAR-S, and M6000 pump (JASCO, Japan) on a reversed-phase column (Merck LichroCART 125-4 RP-18) at  $0.5\text{ mL min}^{-1}$  at  $30^\circ\text{C}$ . Samples were detected at 254 nm. A 2360 ISCO gradient programmer was used for the solvent gradient control. Abbreviations are following; tetrabutylammonium bromide: TBABr, trimethyl-n-octylammonium bromide: TMOABr, trimethyl-n-hexylammonium bromide: TMHABr, benzoic acid: 1BE,

1,2-benzenedicarboxylic acid: 12BE, 1,3-benzenedicarboxylic acid: 13BE, 1,4-benzenedicarboxylic acid: 14BE, 1,3,5-benzenetricarboxylic acid: 135BE, 1,2,4-benzenetricarboxylic acid: 124BE, 1,2,3-benzenetricarboxylic acid: 123BE, 1,2,4,5-benzenetetracarboxylic acid: 1245BE, 1,2,3,4,5-benzenepentacarboxylic acid: 12345BE, 1,2,3,4,5,6-benzenehexacarboxylic acid: 123456BE.

### Coal Oxidation and Analysis by Gas Chromatography


A mixture involving 2 g of coal, 25 g distilled water, and a few grams of NaOH or  $\text{Na}_2\text{CO}_3$  was placed in a 70 mL stainless steel autoclave. After the air was replaced with oxygen, the mixture was heated for 2 h and cooled immediately. The mixture was dissolved in 100 mL distilled water. Water-soluble aromatic acids and water-insoluble acids were separated from the oxidation products by previous method. The water-soluble aromatic acids were extracted into ethyl-methylketone (MEK) and methyl ester of the aromatic acids were derived using diazomethane for the MEK extract. The MEK extract was directly analyzed by HPLC and the methyl esters were analyzed by gas chromatography (GC). Details of elemental analysis and gas chromatography were followed a previous method (5, 15, 16). A Hewlett Packard 5890/8970 GC/MSD system with a 25 m column (0.22 mm inner diameter) coated with 5% phenylmethylsilicon phase was used for analysis of coal oxidation products.

## RESULTS AND DISCUSSION

### HPLC Conditions for the Separation of Aromatic Carboxylic Acids

According to the separation behavior of 10 kinds of benzenecarboxylic acids, the separation was attempted using solvents containing TBABr, TMOABr, or TMHABr in methanol-water system. The separation of isomers possessing the same number of carboxylic groups, such as 12BE, 13BE, and 14BE was difficult unless using solvent containing TMOABr. The optimum separation was achieved using a solvent containing  $3.5 \text{ mmol kg}^{-1}$  TMOABr and 35% methanol. In addition, to facilitate to elute the analytes, solvent gradient was attempted. Samples were analyzed using a solvent containing  $3.5 \times 10^{-3} \text{ mol kg}^{-1}$  TMOABr at pH 7.6 (sodium acetate) using a methanol gradient of 31.5% methanol at 0–15 min, linearly increase at 15–35 min, 40.2% at 35–75 min. It was found that small modification of the solvent gradient program was necessary if different reversed-phase columns were obtained to use from other manufactures.

The chromatograms of authentic samples using isocratic separation condition are shown in Fig. 1. The detection limits were calculated on the basis of signal to noise ratio = 3 (Table 1). The retention times of benzene tetra-, penta-, and hexacarboxylic acids were fairly sensitive to the purity of



**Figure 1.** HPLC chromatogram obtained using isocratic separation condition for a standard sample mixture. Flow rate:  $0.5 \text{ mL min}^{-1}$ , 254 nm,  $30^\circ\text{C}$ ,  $\text{pH} = 7.6$ , TMOABr:  $3.5 \times 10^{-3} \text{ mol kg}^{-1}$ .

distilled water and tailing was observed for benzenehexacarboxylic acid. These were resolved using gradient control of methanol content.

### Analysis of the Oxidation Products of Loy Yang Coal

The nature of Loy Yang coal used in this study is summarized in Table 2 and the coal oxidation products were summarized in Table 3. The analyses are

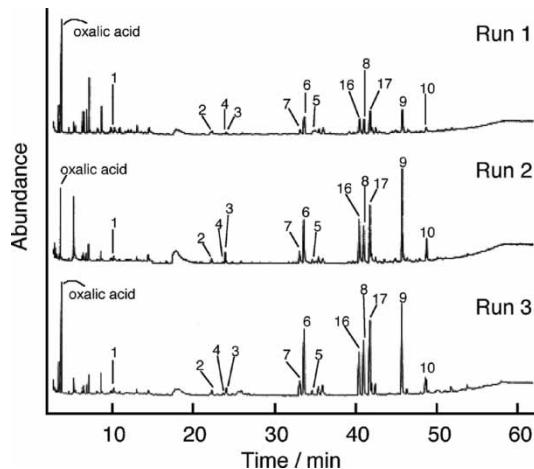
**Table 1.** Detection limits of benzenopolycarboxylic acids at 254 nm

| Bezenopolycarboxylic acids | Detection limits/ $10^{-7} \text{ M}$ |
|----------------------------|---------------------------------------|
| 1,2-BE                     | 9.1                                   |
| 1,3-BE                     | 6.1                                   |
| 1,4-BE                     | 0.74                                  |
| 1,2,3-BE                   | 7.4                                   |
| 1,2,4-BE                   | 2.1                                   |
| 1,3,5-BE                   | 7.0                                   |
| 1,2,4,5-BE                 | 8.3                                   |
| 1,2,3,4,5-BE               | 12.0                                  |
| 1,2,3,4,5,6-BE             | 20.0                                  |

Standard deviation of base line noise corresponds to  $1.5 \times 10^{-5}$  absorbance unit. The detection limits were calculated on the basis of  $S/N = 3$ .

Abbreviations, 12BE: 1,2-benzenedicarboxylic acid, 13BE: 1,3-benzenedicarboxylic acid, 14BE: 1,4-benzenedicarboxylic acid, 135BE: 1,3,5-benzenetricarboxylic acid, 124BE: 1,2,4-benzenetricarboxylic acid, 123BE: 1,2,3-benzenetricarboxylic acid, 1245BE: 1,2,4,5-benzenetetracarboxylic acid, 12345BE: 1,2,3,4,5-benzenepentacarboxylic acid, 123456BE: 1,2,3,4,5,6-benzenehexacarboxylic acid.

**Table 2.** Composition of Loy Yang coal


| Composition (wt%) |     |      |      |       |           |                |
|-------------------|-----|------|------|-------|-----------|----------------|
| C                 | H   | N    | S    | O     | Ash (wt%) | Moisture (wt%) |
| 68.3              | 4.9 | 0.61 | 0.75 | 25.94 | 1.0       | 67.5           |

consistent with a previous study (15). First, the gas chromatography analysis was carried out for the oxidation products. The gas chromatograms are shown in Fig. 2 and the relative extents of benzenepolycarboxylic acids are summarized in Table 4. It was confirmed that a large amount of benzene tri-, tetra-, and pentacarboxylic acids were observed and a small amount of benzenehexacarboxylic acid, benzoic acid, and phthalic acid isomers were identified. Greater extents of benzenepolycarboxylic acids were produced under higher concentration of NaOH or using Na<sub>2</sub>CO<sub>3</sub>. A very small amount of methylbenzenecarboxylic acid was observed. The extents and the type of aromatic acids found in the products are basically consistent with those of Yallourn coal (15).

On the other hand, the MEK extracts without derivation to methyl esters were also analyzed HPLC and the results are summarized in Table 5. It was found that the retention times of 1245BE, 12345BE, and 123456BE were fairly affected. This is probably due to the fact that the coal oxidation products contain complicated matrix using after the MEK extracts, which would affected the separation of the analytes. Thus, 1245BE, 12345BE, and 123456BE were identified by coinjection of the authentic 1245BE, 12345BE, and 123456BE samples.

**Table 3.** Reaction conditions and extent of the oxidation products of Loy Yang coal

| Run                                    | 1    | 2    | 3    |
|----------------------------------------|------|------|------|
| Conditions                             |      |      |      |
| Coal (g)                               | 5    | 5    | 5    |
| Water (g)                              | 25   | 25   | 25   |
| NaOH (g)                               | 5    | 0    | 10   |
| Na <sub>2</sub> CO <sub>3</sub>        | 0    | 6.6  | 0    |
| PO <sub>2</sub> (kg cm <sup>-2</sup> ) | 30   | 30   | 50   |
| T/K                                    | 523  | 523  | 523  |
| Time/h                                 | 2    | 2    | 2    |
| Products (wt%)                         |      |      |      |
| MEK extract                            | 78.8 | 46.2 | 58.1 |
| Water                                  | 13.6 | 17.0 | 0.85 |
| insoluble                              |      |      |      |
| Oxalic acid                            | 42.8 | 5.9  | 33.3 |
| Residue                                | 0.69 | 12.4 | 0.0  |



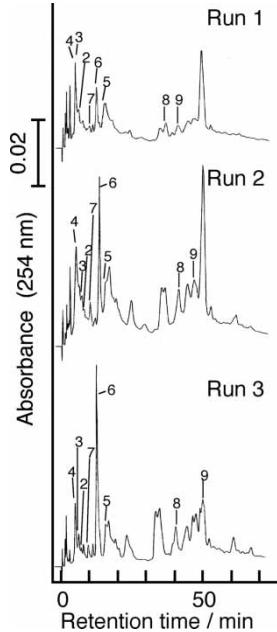
**Figure 2.** GC chromatograms obtained for the MEK extract of coal oxidation products. Numbers for aromatic carboxylic acids are shown in Table 1.

The results by HPLC (Figure 3) were compared with those determined using GC. In spite of the fact that there are so many unknown products found in HPLC other than the standard polycarboxylic acids, the extent of benzenopolycarboxylic acids fairly coincided with GC data. Run 3, which was

**Table 4.** Extents of oxalic acids and benzenecarboxylic acids analyzed by GC-MS for the MEK extract prepared from Loy Yang coal

| Relative extents (wt%)   | Run 1 | Run 2 | Run 3 |
|--------------------------|-------|-------|-------|
| Oxalic acid              | 100   | 100   | 100   |
| 1 (BE)                   | 5.6   | 20.4  | 7.5   |
| 2 (12BE)                 | 2.6   | 17.9  | 9.5   |
| 3 (13BE)                 | 3.2   | 8.9   | 15.5  |
| 4 (14BE)                 | 1.7   | 5.8   | 3.7   |
| 5 (123BE)                | 7.3   | 25.0  | 13.9  |
| 6 (124BE)                | 21.8  | 146.6 | 105.1 |
| 7 (135BE)                | 6.8   | 56.5  | 29.2  |
| 8 (1245BE)               | 16.3  | 121.6 | 76.9  |
| 9 (12345BE)              | 29.6  | 277.3 | 112.1 |
| 10 (123456BE)            | 1.3   | 61.3  | 10.9  |
| 16 (1234BE) <sup>a</sup> | 24.2  | 193.6 | 31.1  |
| 17 (1235BE) <sup>b</sup> | 26.2  | 191.6 | 72.1  |

<sup>a</sup>1234BE: 1,2,3,4-bezenetetracarboxylic acids.


<sup>b</sup>1235BE: 1,2,3,5-bezenetetracarboxylic acids. All other abbreviations are the same as shown in Table 1.

**Table 5.** Extents of benzenecarboxylic acids analyzed by HPLC for the MEK extract prepared from Loy Yang coal

| Relative extents (wt%) | Run 1 | Run 2 | Run 3 |
|------------------------|-------|-------|-------|
| 2 (12BE)               | 12.6  | 26.2  | 25.1  |
| 3 (13BE)               | 17.0  | 38.5  | 32.2  |
| 4 (14BE)               | 15.1  | 23.6  | 10.1  |
| 5 (123BE)              | 12.2  | 55.3  | 17.5  |
| 6 (124BE)              | 21.8  | 146.6 | 105.1 |
| 7 (135BE)              | 11.6  | 79.7  | 28.6  |
| 8 (1245BE)             | 25.6  | 92.2  | 35.0  |
| 9 (12345BE)            | 32.5  | 73.7  | 113.4 |

Relative extents are based on the values of No. 6 shown in Table 4. All abbreviations are the same as shown in Table 1.

prepared under the stronger oxidation conditions than others, showed better agreement between GC and HPLC analyses. This is probably due to the fact that under the stronger oxidation condition the influence of matrix within the oxidation product for the analysis of benzenopolycarboxylic acids is



**Figure 3.** HPLC chromatograms obtained using solvent gradient for the MEK extract of coal oxidation products. Flow rate:  $0.5 \text{ mL min}^{-1}$ ,  $254 \text{ nm}$ ,  $30^\circ\text{C}$ ,  $\text{pH} = 7.6$ , TMOABr:  $3.5 \times 10^{-3} \text{ mol kg}^{-1}$ , methanol content for the linear gradient: 31.5% (0 min), 31.5% (15 min), 40.2% (35 min), 40.2% (75 min).

weaker than that under the mild oxidation condition. Thus, it is concluded that the HPLC analysis shown in this study is compatible to the conventional GC analysis. In addition, this separation condition can be used for the separation and isolation of a large quantity of coal oxidation products.

## CONCLUSIONS

The separation of a mixture of 10 different benzenopolycarboxylic acids was succeeded simultaneously using quaternary ammonium salts and a solvent gradient method. The analytical data obtained by the present HPLC method is fairly consistent with that obtained by the conventional GC technique. Especially, the method was suitable for the coal oxidation products prepared under strong oxidation conditions. An optimum separation condition for the aromatic acids would be useful for more practical and large scale separation and also for the HPLC analysis. It is expected that this method was applicable for the practical separation and HPLC analysis of coal oxidation products as well as an analytical technique.

## ACKNOWLEDGEMENT

This research was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors greatly appreciate Dr. D. Rash and Professor W. R. Jackson of Monash University for the coal oxidation experiment.

## REFERENCES

1. Kimura, H. and Fujii, S. (1977) *Sekitan Kagaku to Kogyo*; Sankyo Press: Tokyo, 181.
2. Kamiya, Y. (1979) The Chemistry of Coal Oxidation. *Nenryo Kyokaishi*, 58: 148–157.
3. Smith, R.C., Tomarelli, R.C., and Howard, H.C. (1939) Oxidation of Carbonaceous Materials to Organic Acids by Oxygen at Elevated Pressure. *J. Am. Chem. Soc.*, 61: 2398–2402.
4. Mae, K., Shindo, H., and Miura, K. (2001) A New Two-Step Oxidative Degradation Method for Producing Valuable Chemicals from Low Rank Coals under Mild Conditions. *Energy & Fuels*, 15: 611–617.
5. Oshika, T. and Okuwaki, A. (1994) Formation of Aromatic Carboxylic-Acids from Coal-Tar Pitch by 2-Step Oxidation with Oxygen in Water and in Alkaline-Solution. *Fuel*, 73: 77–81.
6. Vanheek, K.H., Strobel, B.O., and Wanzl, W. (1994) Coal Utilization Processes and their Application to Waste Recycling and Biomass Conversion. *Fuel*, 73: 1135–1143.

7. Artok, L. and Schobert, H.H. (2000) Reaction of Carboxylic Acids under Coal Liquefaction Conditions—1. Under Nitrogen Atmosphere. *J. Anal. Appl. Pyrolysis*, 54: 215–233.
8. Dunn, J.B., Burns, M.L., Hunter, S.E., and Savage, P.E. (2003) Hydrothermal Stability of Aromatic Carboxylic Acids. *J. Supercritical Fluids*, 27: 263–274.
9. Grzybek, T., Pietrzak, R., and Wachowska, H. (2004) The Comparison of Oxygen and Sulfur Species Formed by Coal Oxidation with O<sub>2</sub>/Na<sub>2</sub>CO<sub>3</sub> or Peroxyacetic Acid Solution. XPS Studies. *Energy & Fuels*, 18: 804–809.
10. Wang, T. and Zhu, X.F. (2004) Conversion and Kinetics of the Oxidation of Coal in Supercritical Water. *Energy & Fuels*, 18: 1569–1572.
11. Kurkova, M., Klika, Z., Klikova, C., and Havel, J. (2004) Humic Acids from Oxidized Coals I. Elemental Composition, Titration Curves, Heavy Metals in HA Samples, Nuclear Magnetic Resonance Spectra of HAs And Infrared Spectroscopy. *Chemosphere*, 54: 1237–1245.
12. Franke, N.W., Klebler, M.W., Rouf, C.H., Savich, J.R., and Howard, H.C. (1952) Water-Soluble Polycarboxylic Acids by Oxidation of Coal. *Ind. Eng. Chem.*, 44: 2784–2792.
13. Parkin, F.G., Fugassi, I.P., and Howard, H.C. (1955) Conversion of Coal to Simple Compounds. *Ind. Eng. Chem.*, 47: 1586–1592.
14. Ando, S. and Kamiya, Y. (1959) Composition of Aromatic Acids Obtained by the Oxidation of Coal. *Nenryo-Kyokaishi*, 38: 638–646.
15. Hemmi, T., Sutoh, N., Chino, A., Okuwaki, A., Amano, A., and Okabe, T. (1982) Oxidation of Coals by Nitrate in Hot Alkaline Solutions. *Nippon Kagaku Kaishi*, 1800–1807.
16. Okuwaki, A., Sutoh, N., Furuya, H., Amano, A., and Okabe, T. (1984) Production of Oxalate by the Oxidation of Coal with Oxygen in a Concentrated Sodium Hydroxide Solution. *Ind. Eng. Chem. Prod. Res. Dev.*, 23: 648–651.
17. Komatsu, M. (1989) 1,2,4-Benzenetricarboxylic Acid Anhydride–(Trimellitic Anhydride). *J. Syn. Org. Chem. Jpn.*, 47: 162–163.
18. Cao, R., Sun, D.F., Liang, Y.C., Hong, M.C., Tatsumi, K., and Shi, Q. (2002) Syntheses and Characterizations of Three-Dimensional Channel-Like Polymeric Lanthanide Complexes Constructed by 1,2,4,5-Benzenetetracarboxylic Acid. *Inorg. Chem.*, 41: 2087–2094.
19. Shiraishi, Y., Toshima, N., Kawamura, T., Mihori, H., Shirai, H., and Hirai, H. (1999) Selective Synthesis of 2,6-Naphthalenedicarboxylic Acid by Use of Cyclodextrin as Catalyst. *J. Mol. Cat. A-Chem.*, 139: 149–158.
20. Ohta, K., Towata, A., and Ohashi, M. (2003) Ion-exclusion Chromatographic Behavior of Aliphatic Carboxylic Acids and Benzenecarboxylic Acids on a Sulfonated Styrene-Divinylbenzene Co-Polymer Resin Column with Sulfuric Acid Containing Various Alcohols as Eluent. *J. Chromatogr. A.*, 997: 95–106.
21. Ohta, K., Ohashi, M., Jin, J.Y., Takeuchi, T., Fujimoto, C., Choi, S.H., Ryoo, J.J., and Lee, K.P. (2003) Separation of Aliphatic Carboxylic Acids and Benzenecarboxylic Acids by Ion-Exclusion Chromatography with Various Cation-Exchange Resin Columns and Sulfuric Acid as Eluent. *J. Chromatogr. A.*, 997: 117–125.
22. Waksundzka-Hajnos, M. (1998) Chromatographic Separations of Aromatic Carboxylic Acids. *J. Chromatogr. B Anal. Tech. Biomed. Life Sci.*, 717: 93–118.

23. Pucciarelli, F., Passamonti, P., and Cecchi, T. (1997) Separation of all isomers of pyridinedicarboxylic acids by ion-pairing chromatography. *J. Liq. Chromatogr. & Rel. Tech.*, 20: 2233–2240.
24. Berger, T.A. and Deye, J.F. (1991) Separation of Benzene Polycarboxylic Acids by Packed-Column Supercritical Fluid Chromatography Using Methanol Carbon-Dioxide Mixtures with Very Polar Additives. *J. Chromatogr. Sci.*, 29: 141–146.
25. Kawamura, K., Nagano, H., and Okuwaki, A. (2005) Extraction of Benzene and Naphthalene Carboxylic Acids Using Quaternary Ammonium Salts As a Model Study for the Separation of Coal Oxidation Products. *Sep. Sci. Tech.*, 40: 2761–2771.